Difference between revisions of "African great ape layers"

From A.P.E.S. wiki
Jump to navigation Jump to search
Line 1: Line 1:
 +
 
[[Spatial Layers]] > [[African great ape layers]]
 
[[Spatial Layers]] > [[African great ape layers]]
  
Line 25: Line 26:
 
var wchimp2019 = 'files/african_great_apes/Heinicke2019_westernchimp.geojson';
 
var wchimp2019 = 'files/african_great_apes/Heinicke2019_westernchimp.geojson';
 
var sec = 'files/african_great_apes/SEC_merged_Af_apes.geojson';
 
var sec = 'files/african_great_apes/SEC_merged_Af_apes.geojson';
 +
var occu_grauer = 'files/african_great_apes/gorilla_occupancy_plumptre.geojson';
 +
var occu_echimp = 'files/african_great_apes/echimp_occupancy_plumptre.geojson';
 
   
 
   
 
       // Create map  
 
       // Create map  
Line 34: Line 37:
 
   
 
   
 
       // POPUP -> this "feature.properties.xxxx" needs to be matching the file please look it up in the file  
 
       // POPUP -> this "feature.properties.xxxx" needs to be matching the file please look it up in the file  
       function forEachFeature(feature, layer) { var popupContent = "<p><b>Species: </b>"+ feature.properties.Subspecies +'</p>'; layer.bindPopup(popupContent);}
+
       //function forEachFeature(feature, layer) { var popupContent = "<p><b>Species: </b>"+ feature.properties.Subspecies +'</p>'; layer.bindPopup(popupContent);}
  
 
       // Set style function that sets fill color property
 
       // Set style function that sets fill color property
Line 41: Line 44:
 
  function stylewchimp2019(feature) { return { fillColor: '#E74F08', fillOpacity: 0.7,  weight: 2, opacity: 0.7, color: '#E74F08', dashArray: '3' }; }
 
  function stylewchimp2019(feature) { return { fillColor: '#E74F08', fillOpacity: 0.7,  weight: 2, opacity: 0.7, color: '#E74F08', dashArray: '3' }; }
 
  function stylesec(feature) { return { fillColor: '#DFE906', fillOpacity: 0.8,  weight: 2, opacity: 0.8, color: '#DFE906', dashArray: '3' }; }
 
  function stylesec(feature) { return { fillColor: '#DFE906', fillOpacity: 0.8,  weight: 2, opacity: 0.8, color: '#DFE906', dashArray: '3' }; }
 +
  function styleoccu_grauer(feature) { return { fillColor: '#DFE906', fillOpacity: 0.8,  weight: 2, opacity: 0.8, color: '#DFE906', dashArray: '3' }; }
 +
  function styleoccu_echimp(feature) { return { fillColor: '#DFE906', fillOpacity: 0.8,  weight: 2, opacity: 0.8, color: '#DFE906', dashArray: '3' }; }
 
   
 
   
       // Null variable that will hold layer
+
       // Null variable that will hold layer // took out onEachFeature: forEachFeature,
          var gaabundanceLayer = L.geoJson(null, {onEachFeature: forEachFeature, style: stylegaabundance});
+
      var gaabundanceLayer = L.geoJson(null, {style: stylegaabundance});
  var wchimp2019Layer = L.geoJson(null, {onEachFeature: forEachFeature, style: stylewchimp2019});
+
  var wchimp2019Layer = L.geoJson(null, {style: stylewchimp2019});
  var secLayer = L.geoJson(null, {onEachFeature: forEachFeature, style: stylesec});
+
  var secLayer = L.geoJson(null, {style: stylesec});
 +
  var occu_grauerLayer = L.geoJson(null, {style: styleoccu_grauer});
 +
  var occu_echimpLayer = L.geoJson(null, {style: styleoccu_echimp});
 
   
 
   
 
       $.getJSON(gaabundance, function(data) { gaabundanceLayer.addData(data);}); gaabundanceLayer.addTo(map);
 
       $.getJSON(gaabundance, function(data) { gaabundanceLayer.addData(data);}); gaabundanceLayer.addTo(map);
 
  $.getJSON(wchimp2019, function(data) { wchimp2019Layer.addData(data);}); wchimp2019Layer.addTo(map);
 
  $.getJSON(wchimp2019, function(data) { wchimp2019Layer.addData(data);}); wchimp2019Layer.addTo(map);
 
  $.getJSON(sec, function(data) { secLayer.addData(data);}); secLayer.addTo(map);
 
  $.getJSON(sec, function(data) { secLayer.addData(data);}); secLayer.addTo(map);
 +
  $.getJSON(occu_grauer, function(data) { occu_grauerLayer.addData(data);}); occu_grauerLayer.addTo(map);
 +
  $.getJSON(occu_echimp, function(data) { occu_echimpLayer.addData(data);}); occu_echimpLayer.addTo(map);
  
 
       // for Layer Control
 
       // for Layer Control
Line 59: Line 68:
 
       // not showing ga densdist 2021 here because it takes ages to load...
 
       // not showing ga densdist 2021 here because it takes ages to load...
 
       var overlayMaps = {
 
       var overlayMaps = {
        "SEC": secLayer,
+
    "SEC": secLayer,
        "Western chimpanzee density": wchimp2019Layer,
 
 
"Great ape abundance per site": gaabundanceLayer,
 
"Great ape abundance per site": gaabundanceLayer,
 +
"Western chimpanzee density": wchimp2019Layer,
 +
"Grauers gorilla occupancy probability": occu_grauerLayer,
 +
"Eastern chimpanzee occupancy probability": occu_echimpLayer,
 
 
+
       };                  
       };      
+
                 
  
 
       //Add layer control
 
       //Add layer control
Line 85: Line 96:
 
|African great apes excluding bonobos and Grauer's gorillas
 
|African great apes excluding bonobos and Grauer's gorillas
 
|[https://iucnapesportal.org/wiki/files/african_great_apes/great_ape_dendist_ION2021.zip ''Predicted African great ape density distribution shapefile''] (ZIP; 568 KB)
 
|[https://iucnapesportal.org/wiki/files/african_great_apes/great_ape_dendist_ION2021.zip ''Predicted African great ape density distribution shapefile''] (ZIP; 568 KB)
|[https://iucnapesportal.org/wiki/files/african_great_apes/great_ape_dendist_ION2021.geojson''Predicted African great ape density distribution geojson''](ZIP; 2.55 MB)
+
|[https://iucnapesportal.org/wiki/files/african_great_apes/great_ape_dendist_ION2021.geojson''Predicted African great ape density distribution geojson''](Geojson; 2.55 MB)
 
|2015
 
|2015
 
|The layer is the first attempt to model continent-wide great ape density distribution from site-level estimates of African great ape abundance. Populations in Central African Republic, Democratic Republic of the Congo, Liberia, and South Sudan are excluded due to excessively high estimates.
 
|The layer is the first attempt to model continent-wide great ape density distribution from site-level estimates of African great ape abundance. Populations in Central African Republic, Democratic Republic of the Congo, Liberia, and South Sudan are excluded due to excessively high estimates.
Line 91: Line 102:
 
|-
 
|-
 
|All African great apes
 
|All African great apes
|
+
|[https://iucnapesportal.org/wiki/files/african_great_apes/afr_great_ape_ab.zip ''African great ape abundance per site shapefile''] (ZIP; 9.68 MB)
|
+
|[https://iucnapesportal.org/wiki/files/african_great_apes/afr_great_ape_ab.geojson''African great ape abundance per site geojson''](Geojson; 37.7 MB)
 
|
 
|
 
|Compilation of all polygons from all sites where great apes population abundance was estimated.
 
|Compilation of all polygons from all sites where great apes population abundance was estimated.
Line 98: Line 109:
 
|-
 
|-
 
|Western chimpanzees
 
|Western chimpanzees
|[https://iucnapesportal.org/wiki/files/african_great_apes/Heinicke2019_westernchimp.tif ''Western chimpanzee density distribution tif - original''] (ZIP; 3.33 MB)
+
|[https://iucnapesportal.org/wiki/files/african_great_apes/Heinicke2019_westernchimp.tif ''Western chimpanzee density distribution''] (Tif; 3.33 MB)
|[https://iucnapesportal.org/wiki/files/african_great_apes/Heinicke2019_westernchimp.geojson''Western chimpanzee density distribution geojson''](ZIP; 851 KB)
+
|
 
|2015
 
|2015
 
|Range-wide predictions of chimpanzee density based on density distribution model.
 
|Range-wide predictions of chimpanzee density based on density distribution model.
Line 105: Line 116:
 
|-
 
|-
 
|All African great apes
 
|All African great apes
|[https://iucnapesportal.org/wiki/files/african_great_apes/SEC_merged_Af_apes.tif ''SEC for great apes tif - original''] (ZIP; 1,020 KB)
+
|[https://iucnapesportal.org/wiki/files/african_great_apes/SEC_merged_Af_apes.tif ''SEC for great apes tif - original''] (Tif; 1,020 KB)
|[https://iucnapesportal.org/wiki/files/african_great_apes/SEC_merged_Af_apes.geojson''SEC for great apes geojson''](ZIP; 547 KB)
+
|
 
|2000s
 
|2000s
 
|Predicted distribution of suitable environmental conditions (SEC) for eight African great ape taxa for the 2000s.
 
|Predicted distribution of suitable environmental conditions (SEC) for eight African great ape taxa for the 2000s.
 
|[https://onlinelibrary.wiley.com/doi/full/10.1111/ddi.12005 Junker, J., Blake, S., Boesch, C., Campbell, G., Toit, L. D., Duvall, C., ... & Kuehl, H. S. (2012). Recent decline in suitable environmental conditions for A frican great apes. Diversity and Distributions, 18(11), 1077-1091.]
 
|[https://onlinelibrary.wiley.com/doi/full/10.1111/ddi.12005 Junker, J., Blake, S., Boesch, C., Campbell, G., Toit, L. D., Duvall, C., ... & Kuehl, H. S. (2012). Recent decline in suitable environmental conditions for A frican great apes. Diversity and Distributions, 18(11), 1077-1091.]
 +
|-
 +
|Grauer's gorilla and eastern chimpanzee
 +
|[https://iucnapesportal.org/wiki/files/african_great_apes/Gorilla_occupany_probability.tif''Grauer's gorilla occupancy probability''] (Tif; 171 KB)
 +
[https://iucnapesportal.org/wiki/files/african_great_apes/Chimpanzee_occupancy_probability.tif''Eastern chimpanzee occupancy probability''] (Tif; 170 KB)
 +
|
 +
|2015
 +
|Occupancy probability models for the Grauer's gorillas and eastern chimpanzees in DRC.
 +
|[https://doi.org/10.1371/journal.pone.0162697 Plumptre, A. J., Nixon, S., Kujirakwinja, D. K., Vieilledent, G., Critchlow, R., Williamson, E. A., ... & Hall, J. S. (2016). Catastrophic decline of world's largest primate: 80% loss of Grauer's Gorilla (Gorilla beringei graueri) population justifies critically endangered status. PloS one, 11(10), e0162697.]
 
|-
 
|-
 
|}
 
|}

Revision as of 09:16, 13 March 2022

Spatial Layers > African great ape layers


Available African great ape layers
Species Shapefile GeoJSON Year Description Source
African great apes excluding bonobos and Grauer's gorillas Predicted African great ape density distribution shapefile (ZIP; 568 KB) Predicted African great ape density distribution geojson(Geojson; 2.55 MB) 2015 The layer is the first attempt to model continent-wide great ape density distribution from site-level estimates of African great ape abundance. Populations in Central African Republic, Democratic Republic of the Congo, Liberia, and South Sudan are excluded due to excessively high estimates. Ordaz-Németh, I., Sop, T., Amarasekaran, B., Bachmann, M., Boesch, C., Brncic, T., ... & Kühl, H. S. (2021). Range‐wide indicators of African great ape density distribution. American journal of primatology, 83(12), e23338.
All African great apes African great ape abundance per site shapefile (ZIP; 9.68 MB) African great ape abundance per site geojson(Geojson; 37.7 MB) Compilation of all polygons from all sites where great apes population abundance was estimated. IUCN SSC APES Database 2020
Western chimpanzees Western chimpanzee density distribution (Tif; 3.33 MB) 2015 Range-wide predictions of chimpanzee density based on density distribution model. Heinicke, S., Mundry, R., Boesch, C., Amarasekaran, B., Barrie, A., Brncic, T., ... & Kühl, H. S. (2019). Advancing conservation planning for western chimpanzees using IUCN SSC APES—the case of a taxon-specific database. Environmental Research Letters, 14(6), 064001.
All African great apes SEC for great apes tif - original (Tif; 1,020 KB) 2000s Predicted distribution of suitable environmental conditions (SEC) for eight African great ape taxa for the 2000s. Junker, J., Blake, S., Boesch, C., Campbell, G., Toit, L. D., Duvall, C., ... & Kuehl, H. S. (2012). Recent decline in suitable environmental conditions for A frican great apes. Diversity and Distributions, 18(11), 1077-1091.
Grauer's gorilla and eastern chimpanzee Grauer's gorilla occupancy probability (Tif; 171 KB)

Eastern chimpanzee occupancy probability (Tif; 170 KB)

2015 Occupancy probability models for the Grauer's gorillas and eastern chimpanzees in DRC. Plumptre, A. J., Nixon, S., Kujirakwinja, D. K., Vieilledent, G., Critchlow, R., Williamson, E. A., ... & Hall, J. S. (2016). Catastrophic decline of world's largest primate: 80% loss of Grauer's Gorilla (Gorilla beringei graueri) population justifies critically endangered status. PloS one, 11(10), e0162697.